skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Espinoza, Vanessa B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The reaction of aqueous suspensions of single-wall carbon nanotubes (SWCNTs) with UV-excited sodium hypochlorite has previously been reported to be an efficient route for doping nanotubes with oxygen atoms. We have investigated how this reaction system is affected by pH level, dissolved O2 content, and radical scavengers and traps. Products were characterized with near-IR fluorescence, Raman, and XPS spectroscopy. The reaction is greatly accelerated by removal of dissolved O2 and strongly suppressed by TEMPO, a radical trap. Alcohols added as radical scavengers alter the reaction efficiency and the product peak emission wavelengths. Photofunctionalization with 300 nm irradiation is substantially less efficient at pH levels low enough to protonate the OCl- ion to HOCl. We deduce that in mildly treated high pH samples, the main product is sp2 hybridized O-doped adducts formed by reaction of SWCNTs with atomic oxygen in its 3P (ground) level. By contrast, treatment under low pH conditions leads to sp3 hybridized SWCNT adducts formed by the addition of secondary radicals from reactions of OH and Cl. There is also evidence for additional photoreactions of product species under stronger irradiation. Researchers using photoexcited hypochlorite for SWCNT functionalization should be alert to the range of products and the sensitivity to reaction conditions in this system. 
    more » « less
    Free, publicly-accessible full text available January 21, 2026
  2. Photoactivatable fluorophores have been widely used for tracking molecular and cellular dynamics with subdiffraction resolution. In this work, we have prepared a series of photoactivatable probes using the oxime moiety as a new class of photolabile caging group in which the photoactivation process is mediated by a highly efficient photodeoximation reaction. Incorporation of the oxime caging group into fluorophores results in loss of fluorescence. Upon light irradiation in the presence of air, the oxime-caged fluorophores are oxidized to their carbonyl derivatives, restoring strong fluorophore fluorescence. To demonstrate the utility of these oxime-caged fluorophores, we have created probes that target different organelles for live-cell confocal imaging. We also carried out photoactivated localization microscopy (PALM) imaging under physiological conditions using low-power light activation in the absence of cytotoxic additives. Our studies show that oximes represent a new class of visible-light photocages that can be widely used for cellular imaging, sensing, and photo-controlled molecular release. 
    more » « less